Package: LSEbootLS 0.1.0

LSEbootLS: Bootstrap Methods for Regression Models with Locally Stationary Errors

Implements bootstrap methods for linear regression models with errors following a time-varying process, focusing on approximating the distribution of the least-squares estimator for regression models with locally stationary errors. It enables the construction of bootstrap and classical confidence intervals for regression coefficients, leveraging intensive simulation studies and real data analysis. The methodology is based on the approach described in Ferreira et al. (2020), allowing errors to be locally approximated by stationary processes.

Authors:Guillermo Ferreira [aut], Joel Muñoz [aut], Nicolas Loyola [aut, cre]

LSEbootLS_0.1.0.tar.gz
LSEbootLS_0.1.0.zip(r-4.5)LSEbootLS_0.1.0.zip(r-4.4)LSEbootLS_0.1.0.zip(r-4.3)
LSEbootLS_0.1.0.tgz(r-4.4-any)LSEbootLS_0.1.0.tgz(r-4.3-any)
LSEbootLS_0.1.0.tar.gz(r-4.5-noble)LSEbootLS_0.1.0.tar.gz(r-4.4-noble)
LSEbootLS_0.1.0.tgz(r-4.4-emscripten)LSEbootLS_0.1.0.tgz(r-4.3-emscripten)
LSEbootLS.pdf |LSEbootLS.html
LSEbootLS/json (API)

# Install 'LSEbootLS' in R:
install.packages('LSEbootLS', repos = c('https://nicolas-udec.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Bug tracker:https://github.com/nicolas-udec/lsebootls/issues

Datasets:
  • USinf - US Monthly Inflation Data

On CRAN:

2.70 score 1 scripts 122 downloads 3 exports 40 dependencies

Last updated 5 months agofrom:7074dafe8c. Checks:OK: 1 ERROR: 6. Indexed: yes.

TargetResultDate
Doc / VignettesOKOct 30 2024
R-4.5-winERROROct 30 2024
R-4.5-linuxERROROct 30 2024
R-4.4-winERROROct 30 2024
R-4.4-macERROROct 30 2024
R-4.3-winERROROct 30 2024
R-4.3-macERROROct 30 2024

Exports:applicationCoveragelongmemoryCoverageshortmemory

Dependencies:clicodetoolscolorspacedigestdoParalleldoRNGfansifarverforeachggplot2gluegtableisobanditeratorslabelinglatticelifecycleLSTSmagrittrMASSMatrixmgcvmunsellnlmepatchworkpillarpkgconfigR6rbibutilsRColorBrewerRdpackrlangrlecuyerrngtoolsscalestibbleutf8vctrsviridisLitewithr