Package: LSEbootLS 0.1.0
LSEbootLS: Bootstrap Methods for Regression Models with Locally Stationary Errors
Implements bootstrap methods for linear regression models with errors following a time-varying process, focusing on approximating the distribution of the least-squares estimator for regression models with locally stationary errors. It enables the construction of bootstrap and classical confidence intervals for regression coefficients, leveraging intensive simulation studies and real data analysis. The methodology is based on the approach described in Ferreira et al. (2020), allowing errors to be locally approximated by stationary processes.
Authors:
LSEbootLS_0.1.0.tar.gz
LSEbootLS_0.1.0.zip(r-4.5)LSEbootLS_0.1.0.zip(r-4.4)LSEbootLS_0.1.0.zip(r-4.3)
LSEbootLS_0.1.0.tgz(r-4.4-any)LSEbootLS_0.1.0.tgz(r-4.3-any)
LSEbootLS_0.1.0.tar.gz(r-4.5-noble)LSEbootLS_0.1.0.tar.gz(r-4.4-noble)
LSEbootLS_0.1.0.tgz(r-4.4-emscripten)LSEbootLS_0.1.0.tgz(r-4.3-emscripten)
LSEbootLS.pdf |LSEbootLS.html✨
LSEbootLS/json (API)
# Install 'LSEbootLS' in R: |
install.packages('LSEbootLS', repos = c('https://nicolas-udec.r-universe.dev', 'https://cloud.r-project.org')) |
Bug tracker:https://github.com/nicolas-udec/lsebootls/issues
- USinf - US Monthly Inflation Data
Last updated 5 months agofrom:7074dafe8c. Checks:OK: 1 ERROR: 6. Indexed: yes.
Target | Result | Date |
---|---|---|
Doc / Vignettes | OK | Oct 30 2024 |
R-4.5-win | ERROR | Oct 30 2024 |
R-4.5-linux | ERROR | Oct 30 2024 |
R-4.4-win | ERROR | Oct 30 2024 |
R-4.4-mac | ERROR | Oct 30 2024 |
R-4.3-win | ERROR | Oct 30 2024 |
R-4.3-mac | ERROR | Oct 30 2024 |
Exports:applicationCoveragelongmemoryCoverageshortmemory
Dependencies:clicodetoolscolorspacedigestdoParalleldoRNGfansifarverforeachggplot2gluegtableisobanditeratorslabelinglatticelifecycleLSTSmagrittrMASSMatrixmgcvmunsellnlmepatchworkpillarpkgconfigR6rbibutilsRColorBrewerRdpackrlangrlecuyerrngtoolsscalestibbleutf8vctrsviridisLitewithr
Readme and manuals
Help Manual
Help page | Topics |
---|---|
Calculate the bootstrap LSE for a long memory model | application |
Calculate the coverage of several long-memory models | Coveragelongmemory |
Calculate the coverage for several short-memory models | Coverageshortmemory |
US Monthly Inflation Data | USinf |